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Analytical Approach for Piecewise Linear
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A simple construction is presented which generalizes piecewise linear one-
dimensional Markov maps to an arbitrary number of dimensions. The corre-
sponding coupled map lattice, known as a simplicial mapping in the mathemati-
cal literature, allows for an analytical investigation. In particular, the spin
Hamiltonian which is generated by the symbolic dynamics is accessible. As an
example, a formal relation between a globally coupled system and an Ising
mean-field model is established. The phase transition in the limit of infinite
system size is analyzed and analytical results are compared wilh numerical
simulations.

1. INTRODUCTION

The influence of chaotic motion on the dynamics of systems with a large
number of relevant degrees of freedom is one of the central and unsolved
issues of nonlinear dynamics. This problem has a strong impact on applica-
tions (cf. ref. 1). It is not very well understood from the analytical point of
view, in despite of the enormous amount of numerical results, which are
available in the literature. This drawback comes to a certain extent from
the lack of simple nontrivial models, which can be studied by elementary
methods, and which allow for an investigation of such basic problems. The
present publication intends to narrow this gap.

Recalling the tremendous success, that low-dimensional time discrete
dynamical systems had played in the understanding of low-dimensional
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chaos, systems of coupled maps have become a paradigm for the investi-
gation of complex space time behaviour.'2' They allow for both efficient
numerical simulations'3' and for analytical approaches. Especially it is
possible to introduce a definite notion of space time chaos.'4'5)2

These analytical and even rigorous approaches are based on what is
called the thermodynamic approach towards dynamical systems. Its main
idea is based on the fact, that owing to a symbolic dynamics the stationary
dynamical properties can be described in terms of the statistical mechanics
of spin systems. Within such an approach one dimension of the spin lattice
corresponds to the time axis of the dynamical system, whereas the other
dimensions correspond to the spatial extension. Bifurcations in the dynami-
cal system are reflected by phase transitions in the corresponding spin
system.

Such concepts are especially easy and elementary to apply within the
context of one-dimensional piecewise linear Markov maps.'6"8' Of course,
since the dynamical system has no spatial extension the associated spin
system is one-dimensional, and long range interactions are necessary to
cause a phase transition. Such interactions are typically related to a non-
trivial grammar, singular expansion rates or the violation of transitivity in
the dynamical system.

Among spatially extended systems phase transitions may occur under
much milder conditions since the associated spin lattice is at least two-
dimensional. In fact, it is already a nontrivial task to establish a conven-
tional high temperature phase, since the interactions which occur in the
spin system are rather intricate. Nevertheless, it has been shown rigorously
that certain weakly coupled maps admit correlations decaying exponen-
tially in space and time, and that the corresponding spin system is in the
paramagnetic phase. Hence it was suggested'9' that the occurrence of more
complicated coherent patterns, usually observed in numerical simulations,
are related to the phase transitions in the associated spin system.

There are several examples available in the literature reporting phase
transitions, and I will mention a few of them. For a certain class of coupled
logistic mappings, where a space time mixing state in the weak coupling
regime was proven to exist,'10' stable periodic patterns emerge beyond such
a regime.'11' Although these properties show rigorously that a phase transi-
tion occurs, nothing is known about its nature. Furthermore, the scenario
resembles bifurcations in low-dimensional dynamical systems, since the
spatial extension seems to play no crucial role for the transition. The same
conclusion holds for the so called "peak crossing bifurcation",<12) a kind of

2 As already pointed out by the authors, the terminology space time mixing is more
appropriate.
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boundary crisis which causes space time intermittency from a trivial non
chaotic state. Finally the model proposed by Miller and Huse(13) shows an
Ising like transition, but only in two spatial dimensions. The model is quite
different from that proposed here, since the local dynamics used by Miller
and Huse mimics to a certain extent a single spin. In fact one-dimensional
coupled map lattices of this type do not indicate a phase transition, but the
real mechanism does not seem to be fully understood.114)

Phase transitions associated with short range interactions in the sym-
bolic dynamics should display a finite size behaviour, since the transition
is only possible in the thermodynamic limit, i.e., in the limit of large system
size. Hence the corresponding instability is expected to be related to a
transient behaviour, where the length of the transients increase with the
system size. Numerical simulations show such a behaviour (cf. refs. 15 and
16). Altogether these considerations indicate that it might be helpful to
develop a model which can be handled analytically with moderate effort.

I will propose a model which possesses a coupling quite different from
the famous "diffusive" type coupling.3 It is not surprising that a model
which can be handled analytically has a special type of spatial interaction
too. For that reason Section 2 is devoted to the introduction of the basic
idea using two coupled maps only. We are lead to the discussion of simpli-
cial mappings which are the natural generalization of piecewise linear one-
dimensional Markov maps. The construction will then be performed for
an arbitrary number of maps in Section 3. Although we will finally apply
the results for a globally coupled system, the approach is certainly not
restricted to that case as stated in the conclusion.

2. TWO-DIMENSIONAL SIMPLICIAL MAPPING

Recalling that piecewise linear one-dimensional Markov maps can be
handled analytically, it is tempting to construct a coupled map lattice with
similar properties. Particularly, I want to present a model which is by
construction piecewise linear on its Markov partition, but allows for
instabilities, that means phase transitions, due to the spatial extension.
However, before I dwell on this problem let me introduce in this section
the basic ideas of this construction. For that purpose we restrict ourselves
to the simple case of two coupled maps only.

To begin with let us consider a system of two independent tent maps
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3 As already stressed in refs. 9 and 17 this coupling does not mimic the real diffusion but is
merely chosen as a simple and typical short range coupling.
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Each set (2) of the Markov partition is mapped to the full phase space by
the dynamics (cf. Fig. 1). The grammar is trivial in the sense that all sym-
bol sequences consisting of pairs (rr'0), < r ( 1 ) ) are permitted by the dynamics.

We are now going to introduce an interaction in such a way that the
map remains piecewise linear on a suitable Markov partition and hence
will allow for an analytical and elementary treatment. The strategy consists
in fixing a suitable Markov partition, and then constructing the corre-
sponding analytical form of the mapping. We start from the Markov parti-
tion of the uncoupled system and deform the partition appropriately (cf.
Fig. 2). Consider a fixed set of the partition we intend to construct. On this
set the two-dimensional map has to be affine. A general two-dimensional
affine mapping has six adjustable parameters. Therefore by fixing three
points in phase space and their images the affine mapping is determined
uniquely. For that reason we cannot stick to the cubes,4 which constitute
a Markov partition of the uncoupled system, but have to trace back to tri-
angles, i.e., two-dimensional simplices. In fact, specifying a simplex and an
image simplex fixes uniquely an affine transformation, which maps the
former set onto the latter one. Therefore one introduces an interaction
between the two tent maps, if one deforms the simplices in the Markov
partition but requires that the images of these simplices coincide with the

4 If one demands that the map is continuous and piecewise linear on rectangles, then we are
left with the uncoupled case.
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Fig. 1. Transformation properties of the uncoupled tent maps ( 1 ) . A simplex and its image
is indicated.

Here the spatial index v takes the values 0 or 1. Of course the Markov
partition of the single map carries over as a direct product
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Fig. 2. Simplices of the Markov partition of two coupled maps obtained by a deformation
of the uncoupled case. The shaded area indicates a simplex and its image.

image simplices of the uncoupled case (cf. Fig. 2). However the deforma-
tion cannot be performed arbitrarily, since the image of each simplex has
to consist of a union of simplices in order to guarantee the Markov
property. Hence vertices on the boundary of phase space have to stay on
the boundary, and the vertex on the diagonal has to stay on the diagonal.
This simple geometrical prescription constitutes the basic idea for the con-
struction of the coupled map lattice. In what follows a suitable notation
will be introduced, in order to present the analytical expressions for the
map and the associated partition function. The approach will be held
general enough to capture the case of arbitrary dimension too.

To label the simplices again we start from the uncoupled case. The
simplices are obtained by dividing each square (2) into two simplices as
indicated in Fig. 1. Each simplex has three vertices, the first being given by
a "corner" of the phase space (<7<0', <r(U), the second being given by the
intersection of the boundary and the coordinate axis, and the last one is
located at the centre (0, 0). Corresponding to these vertices the following
symbol is assigned to the two resulting simplices

Analytical Approach for Coupled Map Lattices

Alternatively this convention corresponds to the notation

if P denotes a permutation which is either Q, the transposition of the two
numbers 0, 1 or /, the identity permutation. Within this notation the



Since the volume of the image is always given by 22/2 (cf. Fig. 2) one
obtains for the Jacobian the expression
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uncoupled map T0 induces the following transitions, i.e., the grammar of
the system

As already mentioned the interaction between the tent maps is intro-
duced, by shifting the vertices ( ± 1 , 0 ) and (0, ± 1) along the boundary an
amount, which we denote by / ( ± i , 0 ) and r(0i ±1) respectively. The shifted
vertices read ( ± 1, / ( ± j , 0 ) ) and (/«,_ ± 1 ) , ± 1). In the same way the vertex on
the diagonal ( 0 ,0 ) is shifted to ( t ( 0 i 0 ) , t ( 0 i 0 ) ) . The deformed simplex
[(<7<0), <r ( 1 )); P], to which we assign the same label, possesses the vertices

The grammar (5) and the condition that the map acts linearly on the
simplices, define the dynamical system completely. Within this setting the
numbers f ( < 7 ,C T -) act as parameters for the map T.

It is now possible to evaluate the partition function corresponding to
the topological pressure. For that purpose we need the local expansion
rate, i.e., the Jacobian. The latter is easily obtained from the ratio of the
volume of a simplex and the volume of its image. Hence there is no need
to write down the closed analytical formula for the coupled system at the
moment. If one introduces the notation g= (a(0\ < r ( 1 ) ) and

then the volume of the simplex (6) is given by



The summation in Eq. (10) involves both a summation over symbol pat-
terns {G(^} and over sequences of permutations Pk which are related by
the grammar. In order to read off the spin Hamiltonian from Eq. (10) the
summation with respect to the permutation sequences has to be performed.
But as indicated in appendix A this sequence is almost uniquely determined
by the symbol pattern, if surface terms are discarded. Hence expression
(10) may be understood as a sum over all periodic symbol patterns {cr^v)},
with the sequence of permutations being determined by this pattern accord-
ing to the grammar (5). Summarising, Eq. (10) represents the partition sum
of two coupled spin chains with the interaction being mediated by the
deformation parameters /, i.e., by the coupling in the dynamical system. No
phase transition occurs of course, since no long range interactions are
involved.

5 In fact, a slight ambiguity arises when introducing the partition function, since the corre-
spondence between symbol sequences and orbits is not unique, if orbits on the boundaries
of the partition are considered.
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Performing the summation over all n-periodic symbol sequences5

\.9o> PO]>-, [ f f « - i ; -Pfl-i]. [?o; ^o]v. that are permitted by the grammar
(5) yields for the partition sum corresponding to the local expansion rate
the expression

where P denotes a permutation of the L numbers 0,..., L—\. The vertices
of this simplex are given by

3. ISING TYPE TRANSITION IN A GLOBALLY
COUPLED MODEL

The considerations of the preceding section will be carried over to the
case of L coupled maps, where L may be understood as the extension in
the "spatial" direction of the dynamical system.

We start again from L independent tent maps. Let x = (x(0\..., x ( Z-~")
specify the state of the system in the phase space [ — 1, 1 ]L. Each cube of
the Markov partition, as usual labelled by a e { — 1, 1}L, is divided into LI
simplices according to (cf. Eq. (4))



Here ap(° "' denotes the phase space point which is obtained by replacing
the entries at positions P(Q),..., P(v) in the symbol sequence a with zero.
Uncoupled tent maps have the property, that the image T0(ap{0 "') of a
vertex is obtained, if each coordinate with value ± 1 is replaced by — 1,
and each coordinate with value 0 is replaced by +1. Using this rule the
grammar corresponding to the partition (11) can be constructed, but we
will not need these expressions in what follows.

The interaction among the maps is introduced by deforming the sim-
plices, i.e., by shifting the coordinates of the vertices (12 ) which are zero
by a constant amount. The shifted vertex is generated from gp^0--iV> by
replacing every zero in the sequence by the same constant value t??\« »i,
which of course is smaller than 1 in modulus (cf. Eqs. (3) and (6 ) ) . The
shift may differ from vertex to vertex as indicated by the subscript. For the
shifted vertex the notation T?/>IO ,) is introduced. The construction of the
coupled map lattice is completed by the condition that the image of the
vertex is given by the image of the corresponding vertex of the uncoupled
system T(ran° > • > ) = T0(ffPt-°-••''*). The last condition guarantees that the
image of each simplex is given by a union of simplices like in the uncoupled
case. Since a closed analytical formula of the coupled map lattice T will be
of no use for us, I refrain from writing down such an expression. However
for numerical purposes Appendix B contains a simple recursive algorithm
to evaluate T.

In order to determine the Jacobian one needs the volume of the deformed
simplices. The latter follows immediately from the vertices described above
as
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Since the image of each simplex has the volume 2L/L\ the Jacobian reads

Hence we obtain for the partition sum

where again the summation has to be performed with respect to all n-peri-
odic accessible symbol sequences [<TO; P0],..., [ f f n _ i ; Pn-\], [5a\ PO],-- As
already indicated in the preceding section the permutation sequence Pk is
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(almost) uniquely determined by the two-dimensional symbol pattern
{crjtv)}. Hence we may alternatively perform the summation with respect to
all the spin variables, with the permutations being determined by the spin
pattern. Then the corresponding Hamiltonian of the two-dimensional spin
lattice can be read off from Eq. ( 1 5 ) directly.

The structure of the Hamiltonian is however a little bit hidden since
the permutations depend on the spin variables. To simplify the subsequent
considerations we will refer in what follows to a special choice which
corresponds to a globally coupled system, so that the permutations drop
from the formulas. Let us choose the deformations in such a way, that on
the one hand no interaction in the index k, i.e., in the direction of time
occurs, and on the other hand a global interaction between the spins in the
index r, i.e., an interaction in the spatial direction is realised. Then we are
left with simple mean field Ising chains.

Confer Appendix C for the corresponding explicit construction, which
determines the deformation parameters tgr\a....r) in terms of / /and /and the
normalization constant E0. Roughly speaking the parameter //, corre-
sponding to the magnetic field in the spin system, describes the deviation of
the map lattice from an inversion symmetric case, whereas the spin interac-
tion J mediates the spatial coupling among the maps. Inspecting Eqs. ( 1 5 )
and (16), the Hamiltonian of the full map lattice consists of non interacting
spin chains. Since the interaction within a chain has infinite range a phase
transition occurs at /?// = 0, /?/= 1/2 if the thermodynamic limit L -> cc has
been performed. Hence our coupled map lattice displays a bifurcation,
which is intimately related to the limit of large system size. Of course the
model allows for an analytical calculation of those quantities, which are
determined by the spin pattern, since the partition sum can be evaluated in
the thermodynamic limit.

Let us supplement the analytical results with numerical simulations of
the full map lattice (cf. Appendix B and C for the numerical algorithm).
Keep in mind however that the usual long time average, which will be
denoted by <. . .> in the sequel corresponds to the choice /? = 1 in the con-
text of dynamical systems. Obvious global quantities are given by the spa-
tially averaged symbol sequence and its square
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The dependence of these averages on H and J is displayed in Fig. 3. The
well known behaviour of the Ising mean field model is reproduced, but of
course the results have been obtained here from the dynamics of the map
lattice. One should however keep in mind that from the point of view of
the dynamical system the quantities (17) look a little bit artificial and

Fig. 3. Dependence of the spatially averaged symbol and its square on H and J for system
size L = 256 and L= 128. The time average has been performed using a spatial uniformly dis-
tributed initial condition and 2000 iteration steps, after discarding a transient of length 200.



Analytical Approach for Coupled Map Lattices 737

the actual interpretation of the dependence on the system parameters is
difficult. Nevertheless the main feature, i.e., the second order phase transi-
tion clearly shows up at H~Q, J= 1/2, but finite size effects are super-
imposed.

In order to demonstrate the influence of the system size on the transi-
tion more clearly, consider the zero field dependence of <S2> on the inter-
action strength for different system size (Fig. 4). Since the phase transition
sharpens if the thermodynamic limit is approached, it is obvious that the
transition in the dynamical system is intimately related to the thermo-
dynamic limit. Hence it is a characteristic feature of the high-dimensional
dynamical system.

Finally, let us have a look at the space time evolution in symbol space
as well as in phase space. Consider first the evolution in an inversion sym-
metric situation, i.e., // = 0.0 (cf. Fig. 5). Below the transition point, i.e., for
weak coupling, a rather irregular state is observed. It corresponds to the
space time chaotic regime mentioned in the introduction. Slightly above the
transition point long range order develops, but a lot of "defects" are super-
imposed. The synchronization becomes more perfect, if the coupling is
further strengthened. Of course both phases are mixed, since no symmetry
breaking field is present. With a symmetry breaking field the weak coupling
regime behaves very similar to the zero field case (c.f. Fig. 6). But above
the transition point one phase is dominant and a pure state develops if the
coupling is increased. In summary, the phase transition shows up in the
symbol representation as well as in the phase space coordinates, where
apparently two different kinds of motion occur.

Fig. 4. Dependence of <S-> on the interaction J for zero field H = Q and different system
size (symbols). The solid line displays the analytical result in the thermodynamic limit L -» x.
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Fig. 5. Space time evolution of the symbols a[''] and of the phase space coordinate \[r> for
a system of size L = 256, field H = 0.0, and coupling strengths increasing from above to below
7 = 0.2, 0.6, 1.0. Black/white pixels correspond to the values a= —1/+1 and dark/light pixels
to phase space coordinates close to \= — 1/+ 1.
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Fig. 6. Space time evolution of the symbols a"' and of the phase space coordinate .v^" for
a system of size L = 256, field H = 0.2, and coupling strengths increasing from above to below
/ = 0.2, 0.6, 1.0. Black/white pixels correspond to the values a = — 1 / + 1 and dark/light pixels
to phase space coordinates close to x= — 1/+ 1.
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4. CONCLUSION

A class of piecewise linear coupled map lattices has been investigated
which allows for an analytical approach. The key point of the construction
consists in fixing a Markov partition in terms of simplices, imposing a
grammar, and requiring the map to be linear on this partition. Such an
approach allows for an elementary and analytical construction of the
corresponding spin Hamiltonian. Phase transitions are possible at finite
coupling in the limit of large system size, although the model is locally
expanding and has the Markov property.

The proposed construction may be understood as the natural exten-
sion of piecewise linear one-dimensional maps to more than one dimension.
In fact, by a refinement of the partition a large class of functions, at least
in finite dimensions, can be approximated, as stated by the simplicial
approximation theorem. Furthermore, piecewise linear one-dimensional
maps are able to approximate dynamical features of low-dimensional
chaos, as stated by the Ulam conjecture/18' Similar properties might hold
also for simplicial mappings in connection with high-dimensional dynamics,
but further clarification is certainly needed.

The explicit evaluation of a phase transition has been performed for a
global coupling only. Although globally coupled systems are interesting in
itself I have dealt with a globally coupled system for reasons of simplicity,
since otherwise the exact computation of the phase transition may become
much more involved. I believe that the principal aspects of this paper do
not depend on this choice of coupling. Indeed an interaction in the time
direction of the spin system may be introduced by tracing back to finer
partitions, and a spatial short range coupling may be realised. Hence it seems
possible to construct a model along these lines which is in some sense closer
to a nearest neighbour coupled Ising model in two dimensions, i.e., a model
with short range interactions in each direction but admitting a phase transi-
tion in the thermodynamic limit. Since the objective of the present publi-
cation was on the principal aspect I leave this problem for future work.

In the treatment I have adopted a physicists approach, by considering
systems of arbitrary but finite size and performing the thermodynamic limit
at the end of the calculation. Therefore it is not easy to decide rigorously
whether the dynamical system, being defined by a geometrical construction,
tends to a mathematically well defined limit. Nevertheless the discussion of
the example supports such a conjecture. Then the phase transition like
behaviour in the finite model should be related to a transient dynamics
whose duration increases with the system size. Such an analysis, which is
of course desirable for a deeper understanding of the transition has not
been accomplished yet.
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Models of the type investigated here, i.e., models with a large number
of degrees of freedom showing a phase transition and allowing for an
elementary analytical approach, may be helpful to understand several
features of high-dimensional chaotic dynamics. Although the grammar, i.e.,
the structure of space time periodic orbits was fixed by hand, it is also
possible to investigate the influence of pruning, by considering increasingly
finer Markov partitions. These properties together with an analytical
accessible system may have an impact on the understanding of expansions
in terms of space time periodic orbits, which have recently attracted some
interest.

A. TWO COUPLED MAPS

In order to simplify our computations and not hide the main
arguments behind extensive computations let us specialise to the case
t(0>CT) = t(a>0) = — (Ttanh/, f ( o,o) = 0- I think it will become evident that this
choice does not influence the generality of the arguments.

The partition sum (10) is taken with respect to all H-periodic sequences
( [ a k ; P k ] ) . Consider first those patterns which obey cr^'^crj." for some
index ke[Q, n— 1]. Since the symbols (a(0\ a'1'), that means the sets
[g; /] u [a; Q], already determine a Markov partition, the pattern {a(

k
v)}

specifies a phase space point, which in our case is a period-« orbit.6 But
this orbit does not hit a boundary of the simplices and especially not the
diagonal of the phase space, since at least one pair of symbols has different
entries. The validity of this statement is obvious for the case of noninteracting
maps. It carries over to the general case, since the deformation of the sim-
plices does not destroy topological properties in the phase space. Hence the
sequence of permutations Pk is determined uniquely by the periodic orbit,
that means by the pattern of symbols {a^}.

Consider instead cr[0) = a[l) for all k, i.e., a synchronised orbit. Then
the corresponding phase space point is located on the diagonal, i.e., on the
boundary of the simplices. From the grammar (5) we have that the prede-
cessor Pk of a permutation Pk+i changes according to the symbol a(°£l
and obeys

822/90/3-4-15
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The condition that the sequence Pk is n-periodic, P0-Pn, requires that the
finite sequence (<7J,0/1),..., ff^j) contains an even number of symbols +1.

6 For the particular case <7j.0)= 1, CT^"= — 1 such an argument does not apply. But this single
point does not matter in the thermodynamic limit.



Furthermore there exist two corresponding permutation sequences accord-
ing to Eq. (18) and the choice P0 = I, Q,

Then the partition sum (10) splits into two parts, one part containing
the summation over non synchronised symbol patterns, and the second
part containing the summation over synchronised symbol patterns with an
even number of +1 symbols and two complementary permutation sequen-
ces. If we supplement the first part with the missing synchronised symbol
sequences7 then Eq. ( 1 0 ) reads

holds, and it is exactly this property which simplifies the subsequent con-
siderations. Furthermore we perform in the second and third sum of
Eq. (19) an unconstrained summation over ak, 0 < / c ^ « —2, choosing
er«_i in such a way that the constraint of an even or odd number of +1
values is guaranteed. Then we get

7 In the following an arbitrary but henceforth fixed construction rule for the permutation
sequences is imposed.

742 Just

where the index even/odd means, that the summation is performed with
respect to sequences containing an even/odd number of +1 symbols. Now
in each sum the sequence of permutations is uniquely determined by the
symbol pattern {cr[v>}. By our choice of deformations the relation



We end up with a simple pair interaction in the "spatial" direction and no
interaction in the "time" direction.

8 In general, that means for maps which are not symmetric with respect to the origin, this con-
tribution seems to be a surface term, i.e., it can be neglected compared to the first sum if the
exponential n-dependence is considered.
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The second contribution vanishes identically.8 Now the Hamiltonian can
be read off directly from the partition sum

Here ,?0 denotes the number which makes the expression

B. /.-DIMENSIONAL SIMPLICIAL MAPPING

For a given set of deformation parameters t?p{t>.....,} a recursive algo-
rithm will be developed, which allows for the calculation of the image point
T(x). Let us assume that x is contained in the interior of a simplex, which
from the point of view of a numerical evaluation causes no restriction for
the continuous mapping T. Since the simplices are deformed, it is a non-
trivial task to determine the simplex, that contains a given phase space
point x. However using the fact that simplices are convex, a sequence of
projections is adopted to determine the corresponding set, the simplicial
coordinates and hence the image point (cf. Fig. 7).

Let xm=x denote the phase space point, and io'.= !gp\o i-n =
(t0,t0,...,t0) with /0 :=tgp\o,..,L-\) = t(0 0) the central vertex in the cube
[ — 1, l]L. By our construction this vertex is common to all the simplices
and hence is a vertex of the simplex which contains the phase space point x.
Consider the semi-infinite ray emanating from r0 through xm. It intersects
the surface of the cube [ — 1, 1 ]L at a point denoted by x^

minimal among all components k. The component k0 for which the mini-
mum is attained determines the surface of the cube where the intersection
occurs by the condition ,v(*o) = a(k°\ with a(kfl) being given by
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Fig. 7. Diagrammatic view of the recursive projections onto lower-dimensional faces of the
simplex, which are used to determine the simplex containing the phase space point .y. The box
indicates a quadrant [0, I]1, rA. denote the vertices of the simplex, and .\lk] the sequence of
the projected points.

That surface contains one face of the simplex we are looking for. If we
define P ( L — \ ) : = kQ, then the central vertex within this surface reads
I, :=T?/'io / 21, and it leads to the second vertex of the simplex we are
looking for. Now one repeats the same reasoning using the points *m

and T,, but with the dimension of the problem being reduced by one.
Hence one continues by induction. Determine k>t${P(L—\),...,

P(L—/u)} among those components, which have not been fixed yet, such
that

is minimal. Here tfl :=/ ? / - io ; i „:. Then

and P(L—l—n): = kll determine the next components of the symbol
sequence and the permutation respectively.

yields the new intersection point, using the abbreviation T,, = T?P{« / i /•!•
This iteration terminates exactly after L steps, since we end up with a corner



Furthermore we can express the simplicial coordinates in terms of the
quantities (26), which have already been determined in the course of the
recursion. As we prove at the end of this appendix
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point of the cube [ — 1, 1 ~\L. It yields the simplex [er; />] which contains the
point x.

In addition we can read off the simplicial coordinates 0 ^ /"^ ^ 1 which
are defined by

These coordinates are particularly useful for the evaluation of the image
point T(x). Recalling that the map T is linear on the simplex, and that the
images of the vertices T^ are obtained, by replacing the components with
values +1 by — 1 and the components with values t^ by +1, we get

holds for 0 ̂  v ̂  L — 1. Hence the simple recursion scheme described above
together with Eqs. (30) and (31) complete the algorithm for the numerical
evaluation of the map lattice.

We are left with verifying Eq. (31). Again an induction will be used.
First the component P(L - 1) of Eq. (29) yields

Then using the definition (25) one obtains
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which by virtue of Eq. (24) leads to the result (31) for v = 0. Suppose that
(31) holds for v^p. Evaluation of Eq. (29) for the component P(L — p — 2)
yields

On the other hand, we obtain from the recursion relation (28)

If one now inserts Eq. (34) into Eq. (35) and repeatedly uses Eq. (31) for
v^p one gets

But then from the definition (27) we have

and the result follows from the definition (26).

C. SPATIAL MEAN FIELD COUPLING

Using the abbreviation

a sequence of functions g v ( S v ) will be constructed which obeys



This system of equations defines recursively the functions gv(Sv) for
increasing index v. Since the independent variable is discrete and takes only
a finite number of values, the numerical evaluation is quite straightforward.
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with a constant E0 being independent of the spin variables. Since the left
hand side is invariant with respect to a permutation of the spin numbers
the result (16) follows then immediately if one defines

one obtains

Applying the trivial identity

if the abbreviation hv(x) :=ln cosh gv(x) is introduced. Observing Sv =
cr(v + 1) + Sv + 1 and applying Eq. (41) again to the second term on the right
hand side one gets

If we repeat these steps for the last term on the right hand side and recall
that by definition S, _, =0, one ends up with

Insert Eqs. (44) and (42) into Eq. (39) and equate the coefficients of a(v} on
both sides to obtain finally



It should be remarked that a simple asymptotic evaluation for large system
size L is possible too. Such an evaluation indicates that g v ( S v ) remains
uniformly bounded in the limit of infinite system size.
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